Formation of BH-BH mergers as informed by LIGO/Virgo/KAGRA detections of GWs

Chris Belczynski
A.Olejak, A.Romagnolo, J.Klencki, C.Miller C.Fryer, T.Bulik
D.Holz, R.Hirschi

A.Matamala, J.-P.Lasota, et al.

- O1/O2/O3 mergers (rates):
- BH masses $\left(2-100 M_{\odot}\right): \quad$ decline with M and peaks at $8 M_{\odot}$ and $35 M_{\odot}$
- BH spins (50\% : a<0.25): mostly small and aligned (with exceptions)

major formation scenarios: stars

isolated binaries:

- spirals, ellipticals, dwarf galaxies
- stellar/binary evolution
- 99\% of stars
- formation efficiency: $X_{\text {BHBн }} \approx 10^{-6}$
dynamical interactions:

- globular, nuclear, open clusters
- dynamics + stellar/binary evolution
-0.1% of stars
- formation efficiency: $X_{\text {BHBH }} \approx 10^{-4}$
+ some exotica: triple stars, single stars, binaries in AGN disks, primordial BHs

GW150914: $30+30 \mathrm{M}_{\odot}$ massive BH-BH merger

credit: W.Gladysz - StarTrack simulation
dynamics/globular clusters

credit: A.Askar - MOCCA simulation

1) binary evolution and dynamics: can produce massive $\mathrm{BH}-\mathrm{BH}$ mergers
2) because of (1): the origin of $\mathrm{BH}-\mathrm{BH}$ mergers unknown...

modeling: synthetic universe

Dark Energy Accelerated Expansion

Merger rates: LIGO vs models

LIGO merger rates:
NS-NS: $10-1700 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$
BH-NS: $8-140 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$
BH-BH: $18-44 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}(z=0.2)$ (increase with redshift)

Stellar-origin mergers: binary evolution
NS-NS: $50-120 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$
BH-NS: $0.5-97 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$
BH-BH: $1.1-469 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$
Stellar-origin mergers: dynamical origin
NS-NS: $\sim 0 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$
BH-NS: $\sim 0 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$
$\mathrm{BH}-\mathrm{BH}: \lesssim$ few - tens $\mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$

Stellar-origin BH masses: ~ 2 - 100 M。

+ claims of very massive BHs :
- NGC300 X-1: $20 \mathrm{M}_{\odot}$
- IC10 X-1: $30 \mathrm{M}_{\odot}$
- LB-1: $70 \mathrm{M}_{\odot}$
that were questioned and forgotten

NS/BH mass spectrum (pre-LIGO):
neutron stars: $1-2 \mathrm{M}_{\odot}$ lower mass gap: $\quad 2-5 \mathrm{M}_{\odot}$ black holes: $\quad 5-50 \mathrm{M}_{\odot}$ upper mass gap: $50-130 \mathrm{M}_{\odot}$ black holes: $130-$??? M_{\odot}
lower mass gap: core-collapse SN

- rapid explosions: $\sim 0.1 \mathrm{~s}$ (yes)
- delayed explosions: ~1s (no)
upper mass gap: pair-instability SN
- explosive oxygen burning
- envelope removal or disruption (convection, mixing, reaction rates)

BH masses: LIGO vs models

LIGO BH mass spectrum:
neutron stars: $1-2 \mathrm{M}_{\odot}$
lower mass gap: no evidence black holes: $\quad 2.6-95 \mathrm{M}_{\odot}$ upper mass gap: no evidence

- rapid decrease with $M_{\text {BH }}$
- two peaks: $8 \mathrm{M}_{\odot}, 35 \mathrm{M}_{\odot}$ (real?)

Stellar-origin BHs: binary evolution

- rapid decrease with $M_{B H}$
- no obvious peaks
- range: adjustable up and down
comparison/matching data: potential of learning lots of physics

BH spins: LIGO vs stars

LIGO BH individual spins $\left(a=(c J) /\left(G M^{2}\right)\right.$:
peak: $\quad a=0.13_{-0.11}^{+0.12}$ (!)
median: $\quad a=0.25$
tail: a-> 0.9
highly uncertain estimates: small spins
Stellar-origin (single) BH spins:

- begin with (single) rotating star
- apply angular momentum transport
- remove ang. momentum with winds
- collapse core/star to a BH

Results:

1) non-magnetic model: $a \sim 0-0.9$
2) magnetic model: $a \sim 0.05-0.15$
3) super magnetic model: $a \sim 0.01$

BH-BH effective spin parameter: $\chi_{\text {eff }}$

LIGO BH-BH effective spins:
$\chi_{\text {eff }}=\left(M_{1} a_{1} \cos \theta_{1}+M_{2} a_{2} \cos \theta_{2}\right) /\left(M_{1}+M_{2}\right)$ peak, mean: $\quad \chi_{\text {eff }}=0.05, \quad \chi_{\text {eff }}=0.06_{-0.05}^{+0.04}$ positive/negative: $71 \% / 29 \% ~(\pm 15 \%$) asymmetric distr.: mostly small positive $\chi_{\text {eff }}$

Stellar-origin BH-BH effective spins:

- accretion onto BHs (~ no effect)
- natal kicks (negative $\chi_{\text {eff }}$)
- tidal spin-up (high positive $\chi_{\text {eff }}$)

Results:

1) both: asymmetric with small positive $\chi_{\text {eff }}$
2) super magnetic model: peak at $a \sim 0.05$
3) magnetic model: better overall statistics

Making rapidly spinning Black Holes

LIGO - High-mass X-ray Binary (HMXB) tension

LIGO BHs:

BH masses: ~ $2-100$ M $_{\odot}$ BH spins: $a \lesssim 0.25$

HMXBs: LMC X-1, M33 X-7, Cyg X-1 BH masses: 11, 16, $21 \mathrm{M}_{\odot}$ BH spins: $a=0.92,0.84,0.99$ companion mass: 30, 70, $40 \mathrm{M}_{\odot}$ (LMC X-3 BH: $7 \mathrm{M}_{\odot}, a \sim 0.2-0.3$, but $M_{\text {comp }} \sim 4 \mathrm{M}_{\odot}$)

is there LIGO-HMXB data tension?

 possibly not...
1) BH masses:

- HMXB: local galaxies high Z (~ Mpc) - LIGO: broad Z range ($\sim G p c$)

LIGO - High-mass X-ray Binary (HMXB) tension

2) BH spins: overestimated in HMXBs?

BH spin from spectral fitting depends sensitively on modeling (Cyg X-1):

-for Cyg X-1: spins in broad range found, low spin allowed $a \sim 0.1$
-for LMC X-1: similar analysis also allows for low spin a~0.2 -for M33 X-7: poor data, and no alternative analysis was yet performed
tension: not really apparent if we allow for low BH spins in HMXBs

Summary

(1) $\mathrm{BH}-\mathrm{BH} / \mathrm{BH}-\mathrm{NS} / \mathrm{NS}-\mathrm{NS}$ merger rates can be explained by: isolated binaries (BH-BH merger rates alone: by many models)
(2) BH masses explained easier by: dynamical evolution (yet, high mass BHs can not be excluded in binary evolution)
(3) BH spins explained: by some mixture of isolated binaries and dynamics (majority of spins small and positive, but some negative...)
(4) the origin of LIGO/Virgo BH-BH mergers: remains an open issue

- do we even have a full list of formation channels?
- is there one dominant channel or several channels?
- do BH-BH and NS-NS have the same dominant channel?

NGC 4993: GW170817 host galaxy star formation

NS-NS merger with kilonova: $\sim 1.5 \mathrm{M}_{\odot}+1.3 \mathrm{M}_{\odot}$
NGC 4993:

- medium size elliptical galaxy: at 40 Mpc
- stars at near-solar metallicity: $Z \approx 0.01$
- total star forming mass: $7.9 \times 10^{10} \mathrm{M}_{\odot}$
- peak of star formation rate: 11 Gyr ago
- extra (?) episode of SFR: 0.5-1 Gyr ago (but only $<1 \%$ of total SFR)
almost no current/recent star formation... (Blanchard, Berger et al. 2017, ApJ 848, L22)
estimate NS-NS merger rate in 100 Mpc cube only in elliptical galaxies (old: $\sim 5 \mathrm{Gyr}$) ->

NS-NS merger: in old host galaxies (NGC4993-like)

binary stars:
globular clusters:

rate: $1 \times 10^{-2} \mathrm{yr}^{-1}$

nuclear clusters:

rate: $1 \times 10^{-5} \mathrm{yr}^{-1}$

LIGO rate: $\sim 1 \mathrm{yr}^{-1}$ - so why first NS-NS in old host galaxy?
(Belczynski, Askar, Arca-Sedda, Chruslinska, Donnari, Giersz, Benacquista, Spurzem, Jin, Wiktorowicz, Belloni 2018, A\&A, 615, 91)

NS-NS mergers: delay time distribution

1) binary evolution: typically short delays (mergers in star forming regions) (this is a generic result and very hard to change... $t_{\text {delay }} \propto a^{4} \propto t^{-1}$)
2) cluster evolution: typically very long delays... $\left(t_{\text {delay }}>t_{\text {hubble }}\right)$
